POST Online Media Lite Edition


NEWLY REPORTED COVID-19 CASES (11.19.2021, 4:50pm CEST, WHO):   India 11,106    Brazil 11,977    United Kingdom 46,858    Russia 37,156    Turkey 22,234    France 19,840    Argentina 1,553    Germany 52,970    Spain 3,932    Columbia 2,257    Italy 10,645    Mexico 3,836    Ukraine 20,050    Poland 23,242    Philippines 1,297    Malaysia 6,380    Netherlands 23,680    Peru 1,370    Thailand 6,855    Czechia 13,374    Canada 2,448    Romania 3,076    Chile 2,611    Serbia 3,219    Sweden 1,210    Portugal 2,398    Vietnam 10,223    Kazakhstan 1,272    Austria 14,212    Hungary 11,289    Greece 7,276    Georgia 4,278    Bulgaria 2,785    Belarus 1,844    Slovakia 7,418    Azerbaijan 2,124    Croatia 7,270    Bolivia 1,119    Ireland 4,646    Lithuania 1,847    Denmark 4,013    South Korea 3,034    Slovenia 3,662    Latvia 1,221    Laos 1,401    China 31    New Zealand 200    Australia 1,302   

Cutting-edge technology sheds light on antibiotic resistance

Staff Writer |
Scientists are concerned that resistant strains of bacteria could spread globally through travel or trade, including the exchange of foods.

Article continues below

To help identify the presence of antibiotic-resistant bacteria as early as possible, and take steps to control their further spread, the FDA is using cutting-edge technology called whole genome sequencing (WGS).

A genome is an organism’s complete set of genes. In the 20 years since the first bacterial genome was completely sequenced, the science has advanced dramatically.

The first bacterial genome sequence was uncovered in 1995 at a cost of several hundred thousand dollars and many months of work. Now it costs around $50 per genome and dozens can be done together overnight.

“For the first time, we can rapidly determine the entire collection of known antibiotic resistance genes in an individual bacterium. This is allowing new insights into the nature and magnitude of the resistance threat,” says Patrick McDermott, Ph.D., director of FDA’s National Antimicrobial Resistance Monitoring System (NARMS).

“And, because the database of resistance genes is growing, due to work by scientists around the globe, we can see what others are finding and quickly ascertain if resistance threats emerging in other countries also are present in the United States.”

Whole genome sequencing is also revealing new types of resistance genes in disease-causing bacteria, says McDermott.

For example, NARMS data showed a rapid rise in gentamicin resistance in the foodborne bacteria, Campylobacter. Gentamicin is an antibiotic used to treat certain serious bacterial infections. WGS analysis showed that the genes causing this resistance are numerous, and most had never been seen before.

What to read next

Herbicides raise resistance to medical antibiotics
EFSA report unveils new resistant bacteria threats
Consumption of antibiotics increased by 30 percent