POST Online Media Lite Edition


NEWLY REPORTED COVID-19 CASES (11.19.2021, 4:50pm CEST, WHO):   India 11,106    Brazil 11,977    United Kingdom 46,858    Russia 37,156    Turkey 22,234    France 19,840    Argentina 1,553    Germany 52,970    Spain 3,932    Columbia 2,257    Italy 10,645    Mexico 3,836    Ukraine 20,050    Poland 23,242    Philippines 1,297    Malaysia 6,380    Netherlands 23,680    Peru 1,370    Thailand 6,855    Czechia 13,374    Canada 2,448    Romania 3,076    Chile 2,611    Serbia 3,219    Sweden 1,210    Portugal 2,398    Vietnam 10,223    Kazakhstan 1,272    Austria 14,212    Hungary 11,289    Greece 7,276    Georgia 4,278    Bulgaria 2,785    Belarus 1,844    Slovakia 7,418    Azerbaijan 2,124    Croatia 7,270    Bolivia 1,119    Ireland 4,646    Lithuania 1,847    Denmark 4,013    South Korea 3,034    Slovenia 3,662    Latvia 1,221    Laos 1,401    China 31    New Zealand 200    Australia 1,302   

New class of drugs holds promise for combating antibiotic resistance

Staff Writer |
A new class of drugs that combat antibiotic resistance has been discovered by a University of Oklahoma researcher and team.

Article continues below

In the study supported by the National Institutes of Health, laboratory experiments were combined with supercomputing modeling to identify molecules that boost the effect of antibiotics on disease-causing bacteria.

Helen Zgurskaya, professor of chemistry and biochemistry in the OU College of Arts and Sciences, and OU team members Narges Abdali, Julie Chaney, David Wolloscheck and Valentin Rybenkov, collaborated with Jeremy Smith, Jerry Parks and Jerome Baudry, the University of Tennessee-Oak Ridge National Laboratory Center for Molecular Biophysics; Adam Green, UT; and Keith Haynes and John Walker, Saint Louis University School of Medicine.

They collectively identified four new chemicals that seek out and disrupt bacterial proteins called "efflux pumps," a major cause of antibiotic resistance in bacteria.

"The supercomputing power of ORNL's Titan supercomputer allowed us to perform large-scale simulations of the drug targets and to screen many potential compounds quickly," said Zgurskaya, head of the OU Antibiotic Discovery and Resistance Group at the Stephenson Life Sciences Research Center.

"The information we received was combined with our experiments to select molecules that were found to work well, and this should drastically reduce the time needed to move from the experimental phase to clinical trials," she added.

The team focused on one efflux pump protein, known as AcrA, which connects two other proteins in a tunnel shape through the bacterial cell envelope.

Disrupting this protein could essentially break the efflux pump - an approach unlike other drug design strategies that try to inhibit the biochemical processes.

"In contrast to previous approaches, our new mechanism uses mechanics to revive an existing antibiotic's ability to fight infection," said Smith, UT-ORNL Governor's Chair and director of the UT-ORNL Center for Molecular Biophysics.

The laboratory experiments were done jointly with extensive protein simulations run on ORNL's Titan supercomputer. Large numbers of chemicals were scanned to predict and select which would be the most effective in preventing AcrA proteins from assembling properly.

Using computational models produced by the Titan supercomputer, researchers screened various combinations of molecules and proteins to determine which ones were most disruptive to their formation.

"The first screening took only 20 minutes using 42,000 processors and yielded several promising results," said Parks, ORNL.

"After more extensive analysis, we narrowed down our list to predict which molecules were most likely to disrupt the function of the efflux pump."

What to read next

WHO: Resistant bacteria spreading in hospitals across European Region
New strategy may curtail spread of antibiotic resistance
Excessive antibiotic prescriptions for children in low, middle income countries