In mid-2018, researchers supported by the Italian Space Agency detected the presence of a deep-water lake on Mars under its south polar ice caps.
Article continues below
Now, researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
The researchers at USC have determined that groundwater likely exists in a broader geographical area than just the poles of Mars and that there is an active system, as deep as 750 meters, from which groundwater comes to the surface through cracks in the specific craters they analyzed.
Heggy, who is a member of the Mars Express Sounding radar experiment MARSIS probing Mars subsurface, and co-author Abotalib Z.
Abotalib, a postdoctoral research associate at USC, studied the characteristics of Mars Recurrent Slope Linea, which are akin to dried, short streams of water that appear on some crater walls on Mars.
Scientists previously thought these features were affiliated with surface water flow or close subsurface water flow, says Heggy.
In mid-2018, researchers supported by the Italian Space Agency detected the presence of a deep-water lake on Mars under its south polar ice caps.
Now, researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
The researchers at USC have determined that groundwater likely exists in a broader geographical area than just the poles of Mars and that there is an active system, as deep as 750 meters, from which groundwater comes to the surface through cracks in the specific craters they analyzed.
Heggy, who is a member of the Mars Express Sounding radar experiment MARSIS probing Mars subsurface, and co-author Abotalib Z.
Abotalib, a postdoctoral research associate at USC, studied the characteristics of Mars Recurrent Slope Linea, which are akin to dried, short streams of water that appear on some crater walls on Mars.
Scientists previously thought these features were affiliated with surface water flow or close subsurface water flow, says Heggy.
The study in Nature Geoscience, suggests that groundwater might be deeper than previously thought in areas where such streams are observed on Mars.
The findings suggest that the exposed part of these ground fractures associated with these springs as the primary location candidates to explore Mars' habitability.
Their work suggests that new probing methods should be developed to study these fractures. ■