Data collected by NASA's Juno mission to Jupiter indicate that the atmospheric winds of the gas-giant planet run deep into its atmosphere and last longer than similar atmospheric processes found here on Earth.
Article continues below
The findings will improve understanding of Jupiter's interior structure, core mass and, eventually, its origin.
Other Juno science results released today include that the massive cyclones that surround Jupiter's north and south poles are enduring atmospheric features and unlike anything else encountered in our solar system.
The findings are part of a four-article collection on Juno science results being published in the March 8 edition of the journal Nature.
"These astonishing science results are yet another example of Jupiter's curve balls, and a testimony to the value of exploring the unknown from a new perspective with next-generation instruments.Juno's unique orbit and evolutionary high-precision radio science and infrared technologies enabled these paradigm-shifting discoveries," said Scott Bolton, principal investigator of Juno from the Southwest Research Institute, San Antonio.
"Juno is only about one third the way through its primary mission, and already we are seeing the beginnings of a new Jupiter."
The depth to which the roots of Jupiter's famous zones and belts extend has been a mystery for decades. Gravity measurements collected by Juno during its close flybys of the planet have now provided an answer.
"Juno's measurement of Jupiter's gravity field indicates a north-south asymmetry, similar to the asymmetry observed in its zones and belts," said Luciano Iess, Juno co-investigator from Sapienza University of Rome, and lead author on a Nature paper on Jupiter's gravity field.
On a gas planet, such an asymmetry can only come from flows deep within the planet; and on Jupiter, the visible eastward and westward jet streams are likewise asymmetric north and south.
The deeper the jets, the more mass they contain, leading to a stronger signal expressed in the gravity field. Thus, the magnitude of the asymmetry in gravity determines how deep the jet streams extend.
"Galileo viewed the stripes on Jupiter more than 400 years ago," said Yohai Kaspi, Juno co-investigator from the Weizmann Institute of Science, Rehovot, Israel,and lead author of a Nature paper on Jupiter's deep weather layer.
"Until now, we only had a superficial understanding of them and have been able to relate these stripes to cloud features along Jupiter's jets.
Now, following the Juno gravity measurements, we know how deep the jets extend and what their structure is beneath the visible clouds. It's like going from a 2-D picture to a 3-D version in high definition."
The result was a surprise for the Juno science team because it indicated that the weather layer of Jupiter was more massive, extending much deeper than previously expected. The Jovian weather layer, from its very top to a depth of 1,900 miles (3,000 kilometers), contains about one percent of Jupiter's mass (about 3 Earth masses).
"By contrast, Earth's atmosphere is less than one millionth of the total mass of Earth," said Kaspi "The fact that Jupiter has such a massive region rotating in separate east-west bands is definitely a surprise."
The finding is important for understanding the nature and possible mechanisms driving these strong jet streams. In addition, the gravity signature of the jets is entangled with the gravity signal of Jupiter's core.
Another Juno result released today suggests that beneath the weather layer, the planet rotates nearly as a rigid body."This is really an amazing result, and future measurements by Juno will help us understand how the transition works between the weather layer and the rigid body below," said Tristan Guillot, a Juno co-investigator from the Université Côte d'Azur, Nice, France, and lead author of the paper on Jupiter's deep interior.
"Juno's discovery has implications for other worlds in our solar system and beyond. Our results imply that the outer differentially-rotating region should be at least three times deeper in Saturn and shallower in massive giant planets and brown dwarf stars."
A truly striking result released in the Nature papers is the beautiful new imagery of Jupiter's poles captured by Juno's Jovian Infrared Auroral Mapper (JIRAM) instrument. Imaging in the infrared part of the spectrum, JIRAM captures images of light emerging from deep inside Jupiter equally well, night or day. JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter's cloud tops. ■
An upper level high pressure system is expected to continue aiding well above average and potentially dangerous temperatures throughout the West into the first full weekend of September.